Uncategorized

MIT Researchers Build Solar-Powered Low-Cost Drinking Water Desalination System

MIT engineers have built a solar-powered desalination system that “ramps up its desalting process and automatically adjusts to any sudden variation in sunlight, for example by dialing down in response to a passing cloud or revving up as the skies clear.”

While traditional reverse osmosis systems typically require steady power levels, “the MIT system requires no extra batteries for energy storage, nor a supplemental power supply, such as from the grid.” And their results were pretty impressive:

The engineers tested a community-scale prototype on groundwater wells in New Mexico over six months, working in variable weather conditions and water types. The system harnessed on average over 94 percent of the electrical energy generated from the system’s solar panels to produce up to 5,000 liters of water per day despite large swings in weather and available sunlight… “Being able to make drinking water with renewables, without requiring battery storage, is a massive grand challenge,” says Amos Winter, the Germeshausen Professor of Mechanical Engineering and director of the K. Lisa Yang Global Engineering and Research Center at MIT. “And we’ve done it.”

The system is geared toward desalinating brackish groundwater — a salty source of water that is found in underground reservoirs and is more prevalent than fresh groundwater resources. The researchers see brackish groundwater as a huge untapped source of potential drinking water, particularly as reserves of fresh water are stressed in parts of the world. They envision that the new renewable, battery-free system could provide much-needed drinking water at low costs, especially for inland communities where access to seawater and grid power are limited…

The researchers’ report details the new system in a paper appearing in Nature Water. The study’s co-authors are Bessette, Winter, and staff engineer Shane Pratt… “Our focus now is on testing, maximizing reliability, and building out a product line that can provide desalinated water using renewables to multiple markets around the world,” Pratt adds. The team will be launching a company based on their technology in the coming months.

This research was supported in part by the National Science Foundation, the Julia Burke Foundation, and the MIT Morningside Academy of Design. This work was additionally supported in-kind by Veolia Water Technologies and Solutions and Xylem Goulds.

Thanks to long-time Slashdot reader schwit1 for sharing the news.

Read more of this story at Slashdot.

MIT engineers have built a solar-powered desalination system that “ramps up its desalting process and automatically adjusts to any sudden variation in sunlight, for example by dialing down in response to a passing cloud or revving up as the skies clear.”

While traditional reverse osmosis systems typically require steady power levels, “the MIT system requires no extra batteries for energy storage, nor a supplemental power supply, such as from the grid.” And their results were pretty impressive:

The engineers tested a community-scale prototype on groundwater wells in New Mexico over six months, working in variable weather conditions and water types. The system harnessed on average over 94 percent of the electrical energy generated from the system’s solar panels to produce up to 5,000 liters of water per day despite large swings in weather and available sunlight… “Being able to make drinking water with renewables, without requiring battery storage, is a massive grand challenge,” says Amos Winter, the Germeshausen Professor of Mechanical Engineering and director of the K. Lisa Yang Global Engineering and Research Center at MIT. “And we’ve done it.”

The system is geared toward desalinating brackish groundwater — a salty source of water that is found in underground reservoirs and is more prevalent than fresh groundwater resources. The researchers see brackish groundwater as a huge untapped source of potential drinking water, particularly as reserves of fresh water are stressed in parts of the world. They envision that the new renewable, battery-free system could provide much-needed drinking water at low costs, especially for inland communities where access to seawater and grid power are limited…

The researchers’ report details the new system in a paper appearing in Nature Water. The study’s co-authors are Bessette, Winter, and staff engineer Shane Pratt… “Our focus now is on testing, maximizing reliability, and building out a product line that can provide desalinated water using renewables to multiple markets around the world,” Pratt adds. The team will be launching a company based on their technology in the coming months.

This research was supported in part by the National Science Foundation, the Julia Burke Foundation, and the MIT Morningside Academy of Design. This work was additionally supported in-kind by Veolia Water Technologies and Solutions and Xylem Goulds.

Thanks to long-time Slashdot reader schwit1 for sharing the news.

Read more of this story at Slashdot.

Read More 

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to top
Generated by Feedzy